Examples of masas in C*-algebras
نویسنده
چکیده
This paper illustrates the notion of a Cartan subalgebra in a C*algebra through a number of examples and counterexamples. Some of these examples have a geometrical flavour and are related to orbifolds and nonHausdorff manifolds.
منابع مشابه
Tensor Products of Maximal Abelian Subalgberas of C*-algebras
It is shown that if C1 and C2 are maximal abelian self-adjoint subalgebras (masas) of C*-algebras A1 and A2, respectively, then the completion C1 ⊗ C2 of the algebraic tensor product C1 ⊙ C2 of C1 and C2 in any C*-tensor product A1 ⊗β A2 is maximal abelian provided that C1 has the extension property of Kadison and Singer and C2 contains an approximate identity for A2. Examples are given to show...
متن کاملA Correspondence between Maximal Abelian Sub-Algebras and Linear Logic Fragments
We show a correspondence between a classification of maximal abelian sub-algebras (MASAs) proposed by Jacques Dixmier (Dix54) and fragments of linear logic. We expose for this purpose a modified construction of Girard’s hyperfinite geometry of interaction (Gir11). The expressivity of the logic soundly interpreted in this model is dependent on properties of a MASA which is a parameter of the int...
متن کاملOn the Uniqueness of Af Diagonals in Regular Limit Algebras
Necessary and sufficient conditions are obtained for the uniqueness of standard regular AF masas in regular limit algebras up to approximate inner unitary equivalence.
متن کامل$(-1)$-Weak Amenability of Second Dual of Real Banach Algebras
Let $ (A,| cdot |) $ be a real Banach algebra, a complex algebra $ A_mathbb{C} $ be a complexification of $ A $ and $ | | cdot | | $ be an algebra norm on $ A_mathbb{C} $ satisfying a simple condition together with the norm $ | cdot | $ on $ A$. In this paper we first show that $ A^* $ is a real Banach $ A^{**}$-module if and only if $ (A_mathbb{C})^* $ is a complex Banach $ (A_mathbb{C})^{...
متن کاملDerivations of UP-algebras by means of UP-endomorphisms
The notion of $f$-derivations of UP-algebras is introduced, some useful examples are discussed, and related properties are investigated. Moreover, we show that the fixed set and the kernel of $f$-derivations are UP-subalgebras of UP-algebras,and also give examples to show that the two sets are not UP-ideals of UP-algebras in general.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009